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Highlights 

 Surface urban heat island intensity (SUHII) in five large cities of Bangladesh is examined 

 SUHII in these cities is higher in daytime than nighttime 

 Population, lack of greenness and anthropogenic forcing are influencing factors driving SUHII 

 The trend of daytime SUHII shows an increase over time for these cities  

 

Abstract: 

There is currently a lack of knowledge regarding the spatiotemporal variation of day and night surface urban heat 

island intensity (SUHII) in the major cities of Bangladesh.These cities have a large population base and generally 

lack the resources to deal with rapid urbanisation impacts, so any increase in urban temperature has the potential 

to affect people both directly (due to heatwave conditions) or indirectly (due to loss of livelihood). Time series 

diurnal (day/night) MODIS land surface temperature (LST) data for the period 2000 to 2019 was used to produce 

baseline information about SUHI intensity, drivers and temporal trends. Five large cities were selected based on 

population size and historical urban expansion rates. Results indicated that annual SUHII was greater in the 

larger cities of Dhaka and Chittagong than in the smaller cities. SUHII observed during the day was also greater 

than at night. Population (in terms of city size and surface cover), lack of greenness and anthropogenic forcing 

were major factors affecting SUHII. Trend assessments revealed positive trends during daytime in four out of five 

cities, while one city recorded negative trends at night. The findings may provide new insights into impacts arising 

from rapid urbanisation and demographic shifts. 

 

Keywords: Surface urban heat island, MODIS LST, factors, trends, Bangladesh cities 
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1. Introduction  

 

The world is currently experiencing widespread urban expansion, with the expansion rate 

equal to, or even higher than, the growth in the urban population (Seto et al. 2011). The 

world’s total urban area has expanded by 168% between 2001 and 2018, with the highest 

growth rates being observed in Asia and Africa (Huang et al. 2021). Cities and their 

inhabitants have become key drivers of global environmental change (Grimmond, 2007) due 

to a significant increase in human-created impervious areas around the globe (Gong et al. 

2020). Urban expansion substantially alters natural surfaces, resulting in a range of 

environmental effects (Girardet, 2020). Though these effects can vary according to the scale 

of the study (Kalnay and Cai, 2003), they are most noticeable within local environments 

(Grimm et al. 2008).  

 

The difference in temperature between the urban and surrounding rural areas is possibly 

the most visible effect associated with the urbanisation process and is mainly due to 

increased human activities (Heisler and Brazel, 2010). This observed temperature gradient is 

typically known as the urban heat island (UHI) – a phenomenon first noted in the European 

city of London in the early 1800’s (Howard, 1833). The gradient is recorded as an index and 

flags the presence of elevated temperature locations within a city area. Two major types of 

UHIs are distinguished; a) the atmospheric urban heat island (AUHI), and b) the surface 

urban heat island (SUHI). The type of UHI is based on the height above the ground at which 

the phenomenon is observed and measured (Oke, 1982). UHIs modulate local climate (Roth, 

2007; Landsberg, 1981), however they can also significantly influence both local and 

regional climates (Kalnay and Cai, 2003). There is a lack of consensus as to how UHIs 
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contribute to global warming (Emmanuel and Kruger, 2012); the main disagreement being 

whether warming trend estimates derived from weather station data are influenced by local 

warming conditions (Zhou et al. 2004). Studies reveal, however, that the UHI contribution 

may be highly significant at the local scale, especially in rapidly growing cities (Ren et al. 

2007). UHIs amplify thermal intensity (Estrada et al. 2017), so people residing in urban areas 

are becoming increasingly vulnerable to heatwave episodes (Liao et al. 2018). Mora et al. 

(2017) demonstrated that around 30% of the world population is currently at risk of 

exposure to lethal heatwave conditions, a figure which is projected to increase to 48% by 

2100. Im et al. (2017) indicate that the densely populated agricultural region of South Asia 

may also experience extreme heatwave conditions in future. Apart from increasing 

heatwave likelihood, UHIs have the potential to impact human wellbeing and health (Pyrgou 

et al. 2020), vegetation phenology (Kabano et al. 2021), diurnal temperature range (DTR) 

(Yang et al. 2020; Argueso et al. 2014), energy consumption (Li et al. 2019), rate of disease 

vector development (Connolly et al. 2020), water consumption (Guhathakurta and Gober, 

2007) and can also lead to a general reduction in thermal comfort (Salata et al. 2017). With 

UHIs negatively impacting local environmental conditions (Parsaee et al. 2019) and 

becoming a key challenge to achieving urban sustainability (Corburn, 2009), an increasing 

interest in assessing this phenomenon has taken place over the last decade or so 

(Giridharan and Emmanuel, 2018). Causal factors and the relative intensity of impacts vary 

according to latitude and/or climatic regions (Mirzaei and Haghighat, 2010), hence, many 

cities are now basing temperature adaptation/mitigation planning on local climatic 

conditions (Mailings et al. 2017).    
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The techniques used to characterise UHI effect across cities can be broadly divided into: a) 

in-situ (field) measurements, and b) satellite-based estimation. In-situ observations, either 

by fixed weather stations or mobile traversing, are valuable in defining actual ground 

conditions (Hu et al. 2016), however a change in location/instrumentation, as well as 

inadequate coverage, can complicate their use (Wang et al. 2007). To overcome these 

possible issues, land surface temperature (LST) data from airborne and earth observing 

satellites is commonly employed in UHI studies. In-situ air temperature records are typically 

used to examine AUHI, known as the canopy layer heat island (CUHI), and LST data is used 

to reveal the spatiotemporal pattern of SUHI. Remotely sensed data can provide synoptic 

and repeat coverage consistently over large areas, so they are widely utilised on: i) global (Li 

et al. 2020; Chakraborty and Lee, 2019; Peng et al. 2012; Schwarz et al. 2011); ii) regional 

(Raj et al. 2020; Fu and Weng, 2018; Yao et al. 2018a; Zhou et al. 2014; Imhoff et al. 2010; 

Tran et al. 2006); and iii) local scales (Mathew et al. 2017; Wu et al. 2014; Lazzarini et al. 

2013; Tomlinson et al. 2012; Li et al. 2011; Hartz et al. 2006). For example, Peng et al. (2012) 

used 419 global cities to demonstrate SUHI and associated causal factors. They showed that 

daytime surface urban heat island intensity (hereinafter, SUHII) is higher than nighttime, 

noting that the driving mechanisms differed according to the specific climatic zone within 

which the city was situated. Chakraborty and Lee (2019) emphasis that diurnal variability of 

SUHII is highest in equatorial climates and lowest in arid zones. Based on the data from 

more than 400 global cities, Li et al. (2020) note that factors influencing SUHII varied 

spatially between cities. Regional and city-specific studies such as those conducted in China, 

USA and India observe marked seasonality of SUHII (see Raj et al. 2020; Yao et al. 2018a; Fu 

and Weng, 2018). For instance, satellite-based measurements of SUHII by Imhoff et al. 

(2010) indicate that the summer magnitude is larger than winter over 38 populous cities of 
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the US. Likewise, Raj et al. (2020) note that SUHII is strongly influenced by rapid 

urbanisation in 44 Indian cities and nighttime trend is increasing. Huang et al. (2016) show 

that SUHII significantly influences the amplitude of daytime LST in Beijing and Shanghai, and 

that the DTR becomes narrower in Beijing and broader in Shanghai. Alexander (2021) 

reveals that causal factors of urban LST vary according to cities. Chen et al. (2017) indicate 

that urbanisation strongly affects diurnal variation of cities temperature. Even though SUHII 

varies between cities, existing studies underscore the fact that human-dominated land 

use/cover changes, in combination with accelerated anthropogenic activities, are largely 

accountable for generating the excess heat recorded in urban agglomerations (Rodriguez et 

al. 2020; Li et al. 2019; Lazzarini et al. 2013), and therefore location-specific measures are 

required to mitigate this (Li et al. 2020; Ren et al. 2011).  

 

Bangladesh, with an estimated total population of 161 million (m) and density of 1,120 per 

square kilometre (km2) (BBS, 2012), is one country most vulnerable to climate change 

(Eckstein et al. 2019). The regional topography is characterised by a very low-lying land 

surface. It comprises eight administrative divisions, 64 districts and 12 city corporations. 

There are four distinct seasons:  pre-monsoon (March–May), monsoon (June– September), 

post-monsoon (October–November) and winter (December–February). The climate is cool 

and dry during winter, with a hot humid summer and a rainy monsoon showing marked 

seasonality in both rainfall and temperature. Due to an ever–increasing population, the 

country has experienced, and continues to experience, a substantial reduction of existing 

natural surface (such as forest and agricultural lands), and an associated expansion in urban 

land (Rai et al. 2017). The urban population of the country grew from 22.5 m in 1990 to 60 

m in 2019 (https://data.worldbank.org/indicator/SP.URB.GROW? locations=BD; BBS, 2012), 
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with resultant environmental issues in the major cities, including a sharp increase in 

observed temperatures (Kant et al. 2018). The trend of increasingly elevated temperatures 

in the main city is projected to increase, and continuous hot spell periods may become more 

common (Mourshed, 2011). Bangladesh is frequently affected by natural hazards such as 

flooding, so policies and strategies to minimise the impacts of these natural events are well 

developed. It is only recently, however, that urban warming has been recognised as an 

important issue affecting these large urban areas (GED, 2018).  

 

Although the impact of land use/cover change on Landsat-based LST has been examined by 

many researchers (Rahman et al. 2020; Kafy et al. 2020; Roy et al. 2020; Rahman et al. 2020; 

Gazi et al. 2020; Kant et al. 2018; Trotter et al. 2017), only two of them have examined SUHII 

(Roy et al. 2020; Kant et al. 2018). Another work utilises Moderate Resolution Imaging 

Spectroradiometer (MODIS) data of 2002-2014 during the monsoon season (June-August) 

over megacities of Asia, including Dhaka (Itzhak-Ben-Shalom et al. 2017). These works have 

improved the overall understanding of the spatiotemporal variation of LST/SUHII, however, 

they have used limited data (only daytime and selected years) and are limited in scope 

(using only a single city). The temporal resolution of Landsat is coarse (a 16-day cycle) and 

overpasses Bangladesh in the morning hours (10:30 am local time), so the use of Landsat 

data does not provide a complete picture of the real situation given that SUHI often 

intensifies later in the day (Guo et al. 2015). Landsat also does not provide nighttime data, 

which removes estimation of the intensity of SUHI during the night. Existing studies have 

also only examined the relationship between vegetation and LST, but it is highly likely that 

SUHII is also influenced by multiple other factors (Li et al. 2020). Kotharkar et al. (2018), in a 

critical review of existing research, demonstrate that baseline data about UHIs of 
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Bangladesh cities is clearly lacking. The review notes that Delhi, Chennai and Colombo were 

the most frequently studied cities in South Asia. It is important to note that the intensity and 

magnitude of day and nighttime SUHI varies between cities, even if they are in the same 

country (Huang et al. 2016).  

 

Many studies utilise infrared-derived LST data from satellites, such as MODIS, however a 

shortcoming with these measurements is that valid data is restricted to clear‐sky conditions 

(without cloud). Chakraborty et al. (2020) note that, as the recorded LST values are valid 

only for clear-sky conditions they may not represent the climatological mean state. Ermida 

et al. (2019) use passive microwave LST observations to overcome the infrared-based 

limitations and note that the amplitude of clear-sky bias (the difference between average 

clear‐sky and average all‐weather LSTs) is closely related to the fraction of clear-sky days. 

These observations are pertinent in countries where seasonal cloud cover can be an issue. 

 

Existing studies may be of little relevance for the expanding cities of Bangladesh (from the 

viewpoint of mitigating the negative impacts) for a number of reasons. Firstly, global studies 

are based on a stationary urban boundary, hence are prone to uncertainty (Manoli et al. 

2019). Findings are therefore difficult to implement on a local level (Chakraborty et al. 

2020). Secondly, satellite observation time greatly influences SUHI intensity owing to the 

fact that the overpass time differs between cities (Mathew et al. 2018). Thirdly, energy and 

health impacts vary between day and night, so characterising the full diurnal scale of local 

climate is essential (Krayenhoff et al. 2018). Fourthly, measures undertaken to curb urban 

warming during summer may intensify SUHI intensity in winter (Debbage and Shepherd, 

2015). Finally, previous studies have not comprehensively examined the spatiotemporal 
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patterns of urban warming, its determinants and trends over these cities, although these 

types of studies are crucial for a populous and data poor country like Bangladesh. The 

identification of city–scale warming patterns can contribute to informed decision–making 

and support the new “smart city” concept aimed at promoting sustainable urban 

development. The findings can also be of value in developing location–specific adaptation 

strategies to reduce environmental impacts related to urbanisation–induced local warming 

and to improve the quality of life of the urban dwellers.   

 

The primary aim of this study is to develop baseline information on the spatiotemporal 

pattern of SUHII in selected cities of Bangladesh using timeseries MODIS LST data. Five large 

cities, namely Dhaka, Chittagong, Khulna, Rajshahi and Sylhet, have been selected based on 

population size, historical urban growth (Rai et al. 2017; BBS, 2012) and the availability of 

ancillary information. The objectives are to: (a) examine annual and monthly day, night 

SUHII between 2000 and 2019; (b) determine factors controlling SUHII in these cities; and (c) 

investigate temporal trends.  

 

2. Materials and methods 

2.1 Datasets  

 

The MOD11A2 LST product (v006) used in this study is 1 km spatial resolution, 8-day 

composite data averaged from MODIS daily observations (10.30 am and 10.30 pm) for the 

2000 to 2019 period. Version 6 data is used in this study due to its improved accuracy (Wan, 

2014). The LST has been retrieved from MODIS 31 and 32 bands using a generalised split-

window algorithm. The initial LST retrieval has been corrected for cloud contamination 
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issues, so this study uses imagery with only clear sky pixels and has been subsequently 

processed to retain pixels with an LST error of ≤2 K.  

Other Version 6 MODIS products used include yearly land use and land cover (LULC) 

(MCD12Q1), an 8-day surface reflectance product (MOD09A1), a daily aerosol optical depth 

(AOD) product at 0.55 µm (MCD19A2), a daily short-wave black and white sky albedo 

(MCD43A3) product and vegetation continuous function product (MOD44B). Gridded 

population data includes annual LandScan data at 1 km spatial resolution 

(https://landscan.ornl.gov/), which provides people per pixel and an average of the 24-hour 

population. To understand the contribution of anthropogenic forcing, nighttime lights (NTL) 

data was used, comprising both the Defence Meteorological Satellite Program – Operational 

Linescan system (DMSP-OLS) and the Visible Infrared Imaging Radiometer Suite (VIIRS) data. 

The NTL data has undergone inter-calibration, intra-annual composition, inter-annual 

corrections (Liu et al. 2012) and cross-sensor calibration. A power function, similar to that 

documented in Wu et al. (2013), was used to intercalibrate the DMSP-OLS data. This 

function was specifically used to obtain the regression coefficients representing the 

relationship between invariant regions of one reference and the other DMSP-OLS images. 

These coefficients were subsequently used to develop the intercalibrated DMSP-OLS data. 

The F152001 image was used as a reference image in this case. Invariant regions were then 

defined from groups of pixels, with each pixel having a standard deviation of ≤1.5 for the 

whole 2000-2013 timeseries. To integrate the VIIRS data with DMSP-OLS, the seasonality of 

VIIRS was initially removed using the Hodrick and Prescott (1997) filter and then the 

Biphasic Dose Response (Ma et al. 2020) model was used to cross-calibrate both NTL annual 

series. A nominal resolution of 1 km was used to make all the datasets consistent.   
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This study utilises the planning boundary of the five cities rather than the city corporation 

area for analysis, since all future urban growth will definitely take place within this defined 

planning zone. A shape file of each planning boundary was acquired from the relevant city 

development authorities.  

 

2.2 Analytical techniques  

 

Yearly MODIS LULC data, using the International Geosphere-Biosphere programme (IGBP) 

classification scheme (Sulla-Menashe and Friedl, 2018), was employed for this study. Several 

steps were involved in defining urban and rural areas using the LULC data. Firstly, the data 

was reclassified into urban and non-urban land covers. This was an iterative process to 

define multitemporal urban boundary (2000-2019) for each city. Secondly, a buffer polygon, 

away from the urban area was created to define the rural boundary. Twenty buffer polygons 

were generated for each year (2000 to 2019) given the number of urban pixels change every 

year, and to ensure that the size of the rural area being approximately the same as urban 

area for each city. Due to dissimilarities in the size of the cities, some adjustments to buffer 

size were required. For example, the rural buffer for Dhaka was 20 km away from existing 

urban cover (Fig. 1) while for Rajshahi it was 15 km. The rational regarding the buffer 

distance variability was that a greater distance from the defined urban pixels would provide 

an increased accuracy in SUHI values (Zhou et al. 2014). Waterbodies in urban areas, as well 

as built-up pixels in rural sites, can potentially influence the accuracy of SUHI intensity 

calculations (Li et al. 2020; Chakraborty and Lee, 2019), so these were removed. Finally, the 

LST values for urban and rural areas were extracted for each month/year (day and night), for 

each city. The intensity of SUHI (SUHII), i.e., the difference in mean LST between urban and 
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rural areas, was then defined for each city. To examine the spatial pattern of SUHII, the 

pixel-wise difference in mean LST was used.   

 

 

Fig. 1 Average land surface temperature (LST) of 2019 in Dhaka megacity and delineation of 

urban and rural boundaries; (a) day; (b) night. Black solid polygon is Dhaka Metropolitan 

Development Plan (DMDP) boundary and dashed line is the buffer polygon location  

 
 

A number of indices were computed from the highest quality pixels of MODIS timeseries 8-

day reflectance product. They were: enhanced vegetation index (EVI) (Liu and Huete, 1995), 

otherwise known as greenness; normalised difference water index (NDWI) (McFeeters, 

1996); biophysical composition index (BCI) (Deng and Wu, 2012); and moisture stress index 

(MSI) (Rock et al. 1986). The reason for using EVI instead of the most popular normalised 

difference vegetation index (NDVI) is that NDVI is prone to saturation (Li et al. 2011). BCI 

was chosen due to its effectiveness in separating impervious surfaces from other urban land 

cover categories (Deng and Wu, 2012). The coefficients utilised in calculating the tasselled 
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cap transformation were obtained from Wu et al. (2013), and were then used to compute 

BCI. Since waterbodies have specific heat capacity and influence both heating and cooling of 

urban environment (Tan et al. 2021), NDWI was used. The availability of soil and plant 

moisture can also significantly modulate urban thermal environment. To understand the 

effect of moisture on SUHI intensity, MSI was employed. Equations used to derive these 

indices are shown in supplementary Table S1. Derived indices were then aggregated at 

monthly and annual scales. Other potential causative factors identified included AOD, 

population, NTL, VCF and albedo. Since black-sky and white-sky albedo are linearly related 

and provide similar result (Peng et al. 2012), only white-sky albedo (WSA) was used. The 

tree cover fraction of annual VCF product (Dimiceli et al. 2015) was also utilised.  

 

A number of steps were performed to isolate potential factors affecting SUHI intensity. 

Initially, the delta values of each causative variable between urban and rural areas (δAOD, 

δBCI, δEVI, δPOP, δMSI, δNDWI, δNTL, δTREE and δWSA) were extracted. Scatterplots were 

produced from the temporally-averaged day and night SUHII of all cities (calculated from 

the annualised mean) and the explanatory variables, and were used to explore the variable 

relationships (supplementary Fig. S2). Prior to conducting the correlations, the 

multicollinearity between independent variables was also tested using the variance inflation 

factor (VIF). In this process, all the variables were used to identify the suitability of individual 

variables and variable combinations. Factors exhibiting high VIF were removed, predictors 

that were linearly uncorrelated were isolated and parameters having a VIP value of <10 (Lin, 

2008) were retained. To determine the temporal relationship between each environmental 

factor and SUHII, twenty samples (2000-2019) for each city was used. The Pearson’s 

correlation coefficient (r) and tests for significance at 95% and 99% levels were performed.   
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The temporal trends of annualised day and nighttime means of SUHII over five cities were 

evaluated using the Mann-Kendall (MK) test (Kendall, 1975; Mann, 1945). The slope of the 

trend was estimated using the Theil-Sen slope (Sen, 1968), with a positive value of the slope 

indicating an increasing trend and a negative value denoting a decreasing trend. The 

corresponding p-value was also estimated (at 95% and 99% significance levels), to indicate 

whether the observed SUHII trend is statistically significant or not.  

 

Finally, to determine the relative impact of cloud cover on clear-sky pixel retrieval, pixel loss 

due to cloud was also calculated. The data was first decoded and then the mandatory QA 

(MODLAND) scientific dataset was clipped using the buffers and cloud cover pixels (value 

10) were removed from the total pixel count for each image to provide a pixels lost/pixels 

retained percentage.  

 

3. Results  

 

3.1 Variability of day and nighttime SUHII  

 

The average SUHII of the cities is shown in Fig. 2. This indicates that the annual daytime 

SUHII is greatest for Dhaka (2.74 °C), followed by Chittagong (1.92 °C), Khulna (1.27 °C), 

Sylhet (1.10 °C) and Rajshahi (0.74 °C). In contrast, nighttime mean SUHII is greatest for 

Chittagong (1.90 °C), with Dhaka second (1.57 °C). The lowest nighttime SUHII is observed in 

Sylhet city (0.16 °C). The annual average SUHII for day and nighttime is positive for all five 

cities, though the magnitude differs. This may be related to the city area and population size 

of these cities.  
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Fig. 2 (a) Daytime; (b) nighttime surface urban heat island intensity (SUHII); and (c) diurnal 

range over five Bangladesh cities, averaged over 2000-2019 

 

The spatial pattern of annual day and night SUHII is presented in Fig. 3. This indicates that 

SUHII is mainly concentrated in the urban core, both during the day and at night. For 

instance, the main urban core of Dhaka experiences values as high as 5 °C while SUHII values 

for Chittagong ranges from 2 to 3 °C during the daytime. At night, elevated temperatures 

are recorded in the urban core of both cities.  

 

Inter-annual day, night and day-night SUHII variability are shown in Fig. 4. The Dhaka 

daytime SUHII exhibits a notable increase in mean temperature from 2.20 °C in 2000 to 3.18 

°C in 2019. The equivalent time period values for Chittagong are 1.80 °C and 2.28 °C, 

indicating an increase of 0.48 °C during that 20-year period. In contrast, the difference in 

SUHII during the day for Khulna, Rajshahi and Sylhet is 0.57, 0.04 and 0.38 °C, respectively, 
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for that period. This suggests that Dhaka has experienced the greatest increase in daytime 

SUHII (0.98 °C) whereas  

 

 

Fig. 3 Spatial pattern of surface urban heat island intensity (SUHII) in five cities, averaged 

over 2000-2019; (a) day; (b) night  

 

Rajshahi has the least (0.04 °C). In regards the nighttime SUHII, Chittagong has the largest 

increase (0.52 °C) followed by Sylhet (0.34 °C), Rajshahi (0.25 °C) and Dhaka (0.23 °C).  

Surprisingly, Khulna has experienced a drop of 0.34 °C in nighttime SUHII since 2000. The 

day-night variability is high for Chittagong followed by Rajshahi, while Dhaka, Sylhet and 

Khulna appear to show a subtle variation. This may point to narrowing/broadening of the 

DTR over time (Fig. 4). The monthly variation of day and night SUHII, and diurnal range, is 

shown in supplementary Fig. S3. 
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Fig. 4 Day, night and day-night interannual variability of surface urban heat island intensity 

(SUHII) in five cities, 2000–2019   

 

Monthly day and night SUHII for the five cities were averaged and are shown in Fig. 5. This 

shows that month-wise day and nighttime SUHII varies substantially between the cities. In 

Dhaka, for example, high SUHII values occur in August (3.52 °C) during the day, and in 

January (2.16 °C) at night. In Chittagong, the daytime maximum SUHII takes place in 

September (3.14 °C) while the nighttime maximum occurs in January (2.40 °C). Khulna 

experiences mostly positive daytime SUHII (except during the months of June and July). At 

night, the months of July to October exhibit negative SUHII. The highest SUHII is seen in 

September (1.52 °C) during the day and in March (1.06 °C) during the night. Positive SUHII 

dominates during both day and night, with the exception being the negative SUHII observed 

in Rajshahi during August nighttime and December daytime. Interestingly, both maximum 

day (3.10 °C) and night (1.99 °C) SUHII occur during the month of July in this city, located in 

northern Bangladesh. The intensity of SUHII appears to vary significantly in Sylhet city since 

negative SUHII dominates during the night as compared to daytime. June records negative 

day and night SUHII, with May having the highest SUHII (1.74 °C) during the day and during 

nighttime, and February having the highest SUHII (1.06 °C). The intensity of daytime SUHI is 

generally the same, while the nighttime intensity varies according to city size, indicating that 
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the day-night variability of urban temperature is decreasing in the larger cities such as 

Chittagong.   

 
  

  

 

Fig. 5 Monthly surface urban heat island intensity (SUHII) in five cities averaged over 2000-

2019; (a) Day; (b) Night  

 

3.2 Factors associated with SUHII  

 

The VIF values of the original nine explanatory variables are shown in supplementary Table 

S4. The analysis reveals that three variables (e.g., EVI, MSI and NDWI) have high VIF values 

across all cities. On the other hand, BCI shows a linear relationship with variables such as 

NTL. Following further analysis, the results indicate that four cities (Dhaka, Chittagong, 

Khulna and Rajshahi) can be explained by a common set of variables while Sylhet cannot 

(Table 1). A high VIF value is observed between δPOP and δNTL for Sylhet, while removing 

NTL provides acceptable VIF values (Table 1). It would be expected that EVI (live vegetation 

or its growth status) and VCF (tree cover per pixel) should have a strong association, 

however this does not appear to be the case. Seven variables were identified as free from 
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collinearity issues and were used to evaluate the relationship between SUHII and any 

potential drivers.   

Table 2 displays the correlation between SUHII and a number of possible driving factors. 

Results indicate that greenness, as defined by the difference in EVI between the urban and 

rural areas, has a consistently negative relationship with day and nighttime SUHII. This 

suggests that vegetation plays a key role in regulating the surface temperature of these 

cities (with the exception of nighttime in Khulna). A statistically significant relationship 

between daytime SUHII and the urban and rural population difference (δPOP) is observed in 

three cities, and at night in Rajshahi.  

 

BCI appears to be linearly related to other variables in four cities, and it shows a significant 

influence on nighttime temperature in Sylhet. This is evidence for the influence of 

impervious surfaces on temperature. Anthropogenic forcing, defined by δNTL, is negatively 

correlated for Dhaka, but shows statistically significant positive relationships for Chittagong 

(both during day and night) and during the day for Khulna and Rajshahi.  

 

The relationship between albedo (δWSA) and SUHII appears to be rather inconsistent. For 

instance, WSA has a significantly positive relationship with daytime SUHII in Chittagong and 

Khulna. However, such a relationship is negative and mostly weak for the other cities (both 

day and night). The effect of aerosol on temperature is negative during the day and 

nighttime for Dhaka and Chittagong, however other cities show a weaker and statistically 

insignificant relationship. Tree cover, obtained from δVCF, has a weakly positive correlation 

during day across cities, but at night, the relationship is negative for Dhaka and Khulna with 
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a much lower correlation coefficient (Table 2). The correlations between monthly SUHII and 

the difference in causative factors also show similar results (data not shown).  

 

3.3 Trends of SUHII  

 

Annual day and nighttime SUHII trends (obtained via Mann-Kendall test) are shown in Table 

3. This indicates that the daytime SUHII trend appears to be increasing for four of the five 

cities, with Chittagong, Khulna and Rajshahi exhibiting a statistically significant trend. During 

nighttime, however, only Rajshahi has a statistically significant increasing trend, and Dhaka, 

Chittagong and Sylhet show an insignificantly positive trend. In contrast, Khulna city exhibits 

a decreasing trend in regards nighttime SUHII.  

 

 

Monthly SUHII trends are presented in Table 4. Dhaka shows an increasing trend during day 

across all months except July, while at night the months of May, July and August show 

negative trends, though the magnitude of the trends differs. Chittagong has an overall 

positive daytime trend (apart from August), but the trend decreases during nighttime in 

May and August. Khulna shows a nighttime negative trend for nearly all months (again with 

the exception of August). Daytime SUHII however shows an overall positive trend (apart 

from July). Rajshahi experiences an increasing daytime trend for most months, while at 

night only April shows a decreasing trend. Sylhet, in contrast, exhibits a daytime increase, 

except in June and August. During the night only May shows a negative trend.  
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3.4 Clear-sky pixel count 

 

The percentage of LST pixels remaining after removal of defined cloud-affected data, but 

before further processing, is shown in Table 5. Further statistics for each aggregated period 

are contained in supplementary Table S5 which illustrates the impact of cloud cover on the 

base diurnal LST value counts, annually and seasonally, for the five cities. There is minimal 

loss of pixels in the post-monsoon and winter periods, with > 95.6% valid pixels recorded 

over the city areas during both day and night. The counts during the pre-monsoon season 

indicate that most urban and rural areas recorded average valid pixel counts of 

approximately 90%, although Sylhet, located in a topographically elevated region in the 

north-east of the country recorded 85% valid pixels during both day and night. The monsoon 

period, characterised by heavy rainfall and extensive cloud cover, shows average valid pixel 

counts for all cities of 35.6% for rural day time, 31.4% for urban daytime, 27.9% for rural 

nights and 28.5% for urban nights. Chittagong, the only city located next to the ocean, 

recorded 34.4% to 35.7 % for daytime (on par with other cities) but a very low 15 to 18.1% 

for monsoon nights. This may be the result of oceanic influences during nighttime. Using the 

term clear-sky pixel as an indication of individual LST robustness is appropriate, however the 

term is questionable if used during monsoonal periods when a significant reduction in valid 

pixels may impact areal LST calculations. 
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4. Discussion 

 

A rapid growth in population and the associated urban areas are recognised as significant 

and active agents of local temperature change (Chapman et al. 2017), especially in 

developing countries. Urbanisation, in combination with global warming, is expected to 

increase heat-related mortality (Mora et al. 2017). Cities in developing countries typically 

have large populations and generally lack the resources to deal with the consequences of 

rapid urbanisation (Moretti, 2014), so a consistent rise in temperature in these areas has the 

potential to negatively impact the lives and livelihood of millions (Huq, 2001). Evaluating the 

spatiotemporal pattern of urban warming, as well as identifying possible causal factors, is 

the first step in the development of possible adaptation measures (Ren et al. 2011). This 

process appears to be currently lacking for the cities of Bangladesh. 

 

No comparable studies are available to validate the SUHII variation observed in the current 

analysis, however the Chakraborty and Lee (2019) study has provided an opportunity to 

compare results. For example, this work found that the annual day and nighttime SUHII 

values were 2.74 and 1.57 °C for Dhaka, while their study reported 1.60 and 1.03 °C, 

respectively. Likewise, SUHII values for other cities tended to vary between the two studies 

though the spatial patterning was very similar. The strongest SUHII was mainly confined to 

the urban core during both day and night (Fig. 3), which may be related to high population 

density as well as other sociocultural factors such as income and access to transportation 

(Chakraborty et al. 2020). Surface roughness of the urban areas (Hu et al. 2016) could also 

be important. A comparison of monthly SUHII values across the cities revealed some 
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similarities in the observed variation. Observed discrepancies in day/night SUHII values may 

have resulted from the data and methods used (Yao et al. 2018b). For instance, Chakraborty 

and Lee (2019) used both Aqua (MYD) and Terra (MOD) LST datasets from 2003-2018 with a 

calculated LST error of ≤3 K. MYD data is collected during overpasses at 1.30 pm and 1.30 

am in contrast to the 10.30 am and 10.30 pm collection time for MOD. The current study 

utilised 20 years (2000-2019) of data from only the Terra sensor, with a defined LST error of 

≤2 K. Previous studies have shown that variations in the MODIS quality flag use can 

significantly impact the estimation of SUHII (Lai et al. 2018). The number of samples 

obtained can have a significant effect (de Faria Peres et al. 2018), and the environmental 

condition of the overpass area also affects SUHII characterisation (Kerr et al. 2004). 

Differences in the delineation of the defined urban extent is another possible area of 

variation. As noted earlier, city-specific SUHII studies of Bangladesh are virtually non-

existent, however previous studies with selected Landsat data (Roy et al. 2020; Kant et al. 

2018) had indicated an increased daytime SUHII, corroborating the current findings. The 

impact of land use change on LST produced a similar outcome for Rajshahi (Kafy et al. 2020) 

and Dhaka (Rahman et al. 2020; Trotter et al. 2017). It is, therefore, reasonable to say that 

this work has provided important baseline information on monthly and annual intensity of 

SUHI, during the day and night, and that larger cities appear to have greater variation than 

smaller cities. This contrasts with the findings of Peng et al. (2012).  

 

The temporal evolution of SUHII indicated that the warming trend was intensifying over 

time, particularly in Dhaka and Chittagong (Fig. 4). Studies undertaken on global to local 

scales have also observed this phenomenon; a response to increased anthropogenic forcing 

and heterogeneous urban mosaics irrespective of climatic zone (Alexander, 2021; Raj et al. 
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2020; Li et al. 2020; Peng et al. 2019; Lai et al. 2018; Deilami et al. 2018; Yao et al. 2018a; 

Zhou et al. 2014; Hu et al. 2016; Quan et al. 2016; Coseo and Larsen, 2014; Bowler et al. 

2010). Nocturnal SUHII dominated in the coastal city of Chittagong (Fig. 4), a result similar to 

Jauregui (1997). This nighttime feature may be associated with significant warming of the 

Indian Ocean and the Bay of Bengal over the last few years (Panmei et al. 2017), as well as 

differential, evaporative cooling due to impervious surfaces (Ojeh et al. 2016), surface 

roughness related vertical mixing (Hu et al. 2016) and differences in other physical 

processes related to the release of anthropogenic heat (Wang et al. 2017).  

 

One notable feature observed is the change in diurnal range, both at the annual and the 

monthly scales, over the cities. Chittagong had a strong narrowing in annual DTR, followed 

by Rajshahi (Fig. 4). At the monthly scale, however, the narrowing of DTR was more 

pronounced during the winter months (December–February) than during the monsoon, 

similar to that observed in data recorded at stations in Bangladesh (Abdullah et al. 2021) 

and with downscaled climate data (Mourshed, 2011). Maximum land temperature tends to 

occur in the afternoon and minimum temperature in the early dawn, so TERRA may have 

underestimated DTR in this work. Other MODIS sensors (such as Aqua) which acquire data 

during midday and early morning, may be used to corroborate the DTR variability in the 

study area. Urban expansion affects the minimum temperature to a greater degree than 

maximum temperature, and this reduction in day-night temperature variability in the dry 

season has been previously observed (Argueso et al. 2014). Huang et al. (2016) noted that 

the amplitude of annual daytime LST is enhanced due to urbanisation in China, resulting in a 

narrower DTR in Beijing than in Shanghai. Hence, the impact of UHIs on annual temperature 

cycle (ATC) is warranted. The temporal fluctuation of SUHII can also be associated with rapid 
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land cover changes and crop phenology (Quan et al. 2016), multiple reflection by 3-D urban 

structures, a reduction of evapotranspiration due to an abundance of impermeable surfaces 

(Wang et al. 2016) and differential cooling rates during the early evening transition period 

(Hu et al. 2016). As far as land cover change is concerned, the large cities of Bangladesh 

have probably experienced a greater rate of change than most other cities on the globe, a 

rate primarily driven by high rural-urban migration (see Kant et al. 2018).  

 

The correlation between mean day and nighttime temperature was plotted to understand 

whether factors affecting temperatures during the daytime were different to nighttime (Fig. 

6). The analysis showed a statistically significant correlation (R2 = 0.50; p = 0.00) across 

cities, suggesting that drivers influencing SUHI intensity were generally identical (Table 2). 

This finding contrasts with that of Peng et al. (2012) who reported no correlation between 

annual day and nighttime SUHII, and that drivers seemed to vary between the different 

global cities. Causal factors associated with the genesis of SUHII did vary in strength in this 

study, however population, imperviousness and lack of vegetation (greenness or live 

vegetation) appeared to be strong contributors to the rise of urban temperature.  
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Fig. 6 Relationship between annual mean day and nighttime SUHII across cities  

 

An analysis of potential collinearity between factors indicated that NDWI, MSI and EVI were 

linearly dependent (Table S3), possibly due to similar moisture and/or wetness 

characteristics. The use of a common spectral region (i.e., near infrared) to derive these 

indices may also be involved. Imperviousness, represented by the biophysical composition 

index (BCI), was also associated with population in four of the cities, but not in Sylhet. The 

variables with strong linear relationships were removed from the analysis resulting in the 

explanatory variables having a much smaller value than the VIP threshold value of <10 

(Table 1).  

 

Human populations play a major role in shaping cities and influencing the thermal 

environment of urban areas, so increasing population numbers both expand city size and 

are accountable for the rapid transformation of natural land cover to impervious surfaces. 

Substituting BCI with population does not necessarily indicate that the degree of 

imperviousness contributes less to SUHII. Rather, the population number or density 
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indirectly reflects the development intensity of an area and the complexity of the urban 

surface. For instance, a greater population means a greater number of sociocultural 

elements which can directly (by metabolic heating) or indirectly (by anthropogenic heat flux) 

affect a city’s surface temperature (Rizwan et al. 2008). In contrast, the prevalence of 

impermeable materials resulting from an increasing population, such as buildings, streets 

and other man-made features, enhance thermal admittance and high heat storage and lead 

to a modification in local energy balance (Wang et al. 2016; Mirzaei and Haghighat, 2010; 

Oke, 1982). Thus, these two factors either in combination, or singly, result in higher 

temperatures. Population differentials between urban and rural locations (δPOP), exhibited 

strong influence on the daytime SUHII for Dhaka (r = 0.92), Chittagong (r = 0.72) and 

Rajshahi (r = 0.50) which is in accord with studies conducted in Asian cities (Wu and Zhang, 

2018; Tran et al. 2006; Sakakibara and Matsui, 2005) but contrasts with Peng et al. (2012). 

The negative relationship between nighttime SUHII and δPOP in the coastal cities of 

Chittagong and Khulna was likely to be attributed to the effect of sea breezes (Santamouris 

et al. 2017). The association between δBCI and temperatures during day and night was 

positive for Sylhet (Table 2), suggesting biophysical composition, between urban 

neighbourhoods, contributed positively to SUHII (Wang et al. 2017; Song and Wu, 2016; Guo 

et al. 2015). Despite differences in the nighttime lights between urban and rural (sub-urban) 

(δNTL) areas showing a positive effect on SUHII on global and regional scales (Li et al. 2020; 

Raj et al. 2020; Yao et al. 2018a), its effect on day and nighttime temperature was negative 

for Dhaka (Table 2), although a strong to moderate association can be seen for the other 

cities, except for Khulna at night (r = -0.625). This reinforces the idea that human 

populations, along with enhanced socioeconomic activities, are primarily responsible for 

local warming, especially in Bangladesh cities and that factors controlling SUHII can vary 
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between cities, even if they are within the same country or continent, a fact observed by 

other researchers (Alexander, 2021; Zhou et al. 2017).   

 

Vegetation, characterised by δEVI, showed a consistently negative relationship with day and 

nighttime SUHII, with the exception of Khulna during the night (Table 2). Previous studies 

have emphasised the role of greenness in moderating urban temperature, especially during 

daytime (Raj et al. 2020; Li et al. 2020; Chakraborty and Lee, 2019; Peng et al. 2019; Yao et 

al. 2018a; Chen et al. 2017; Zhou et al. 2014; Quan et al. 2016). The cooling potential of an 

area is usually controlled by differences in evaporative cooling, variations in land use/cover, 

the absence of moisture and the lack of vegetation (Shojaei et al. 2017; Ojeh et al. 2016; 

Charbi and Bakhit, 2011). The observed relationship between δEVI and SUHII is therefore 

noteworthy, particularly in the context of Bangladesh cities. Green coverage (tree cover 

fraction) displayed inconsistent results, albeit with much lower correlations, apart from a 

nighttime negative relationship in Dhaka and Khulna (Table 2). This may be related to 

varying phenological processes (Kabano et al. 2021), an absence of shading (Giridharan and 

Emmanuel, 2018), seasonal variation in the LST-vegetation relationship (Qiao et al. 2013) 

and small signal of δVCF due to noise introduced by urban-rural differentials (Chakraborty et 

al. 2020). As a typical urban area in Bangladesh has a low tree density and is characterised 

by highly scattered vegetation patches (Rahman et al. 2019), any existing tree coverage may 

be of little help in promoting convection cooling. The cooling effect of vegetation is also 

dependent on its type. For instance, evergreen vegetation is substantially more effective in 

providing year-round benefits than deciduous vegetation (Chun and Guldmann, 2018). In 

contrast, a dispersed distribution of vegetation provides little cooling benefit (Quan et al. 

2014), so strategically placing them in heat-exposed areas is more effective than arbitrarily 
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aiming for a high percent of green cover in cities (Zolch et al. 2016). Although precise 

information on greenspace use (either as urban forest or parks) is sparse in Bangladesh, a 

previous study has shown that the existing per capita green space within large cities is very 

low (Jaman et al. 2020). Since areas of low LST is a typical characteristic of greenspace, these 

are usually the target for development during the urbanisation process (Yang et al. 2017), 

and a substantial reduction of greenspace in urban areas has been noted, intensifying the 

urban temperature profile (Kant et al. 2018). This practice is also seen elsewhere, with 

negative consequences for the local and regional thermal environment (Yang et al. 2017).  

 

The association between albedo and SUHII was mostly negative, though daytime SUHII 

showed a strong positive relationship for Chittagong and Khulna (Table 2). The negative 

correlations may have stemmed from surface heat storage and the energy exchange 

capacity of urban features, as well as the lack of vegetation/greenness (Shojaei et al. 2017; 

Quan et al. 2016; Peng et al. 2012). While a positive relationship was expected between 

SUHII and δAOD (the difference of AOD between the urban and rural areas), it was found 

that the correlations were negative for Dhaka and Chittagong, both during the day and at 

night, whereas a weak relationship was observed for other cities such as Sylhet. While a 

similar finding was noted by Raj et al. (2020) for major Indian cities, the seasonal 

distribution of aerosol loading seems to have impacted on day and night SUHII in the urban 

areas (Panday et al. 2014).  

 

Annual day and nighttime positive trends in SUHII over all four cities (apart from Khulna at 

night) are indicative of urban area warming in Bangladesh (Table 3). This is consistent with 

the results of Raj et al. (2020). Although monthly SUHII trends varied, positive trends were 
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observed during the dry months of December to February and the transitional month of 

November (Table 4). This highlights the impact of global warming (Giridharan and 

Emmanuel, 2018) and the physical processes associated with SUHI development taking 

place within cities (Wang et al. 2017).  

 

Some limitations to this study should be noted. Firstly, only remotely sensed variables were 

used to identify potential controlling factors of SUHII over Bangladesh cities. The inclusion of 

background climate (Sun et al. 2019), urban planning indicators (Guo et al. 2016), landscape 

metrices (Peng et al. 2020), black-sky albedo (Oleson et al. 2003) and waste heat 

information (Rizwan et al. 2008) could make future work more robust, as these variables can 

have a marked impact on land surface temperature. Since SUHII has strong diurnal and 

seasonal variations, characterising it at diurnal and seasonal scales would also be of great 

value. The two MODIS sensors (Aqua and Terra) record data four times a day, therefore, 

characterising SUHII based on the combination of the two sensors may provide a more 

accurate estimate of SUHII (Lai et al. 2018). Hu et al. (2016) has argued that remotely sensed 

LST overestimates the surface temperature of horizontal features and underestimates the 

surface temperature of vertical features in an urban area, so the resulting representation of 

the actual surface temperature may be poor. To overcome this estimation issue, the use of 

in-situ instrumentation is vital in providing true measurements of UHIs. Finally, the issue of 

reduced pixel count values (due to reduced clear sky conditions) is observed most notably in 

the monsoon period in Bangladesh, and hence the impact on LST and derived intensity 

values is most pronounced in this season. In general, the better the clear-sky conditions, the 

lower will be the missing pixel percentages (i.e., the greater the percentage of valid pixels). 

It can be assumed that the LST values recorded with 100% valid pixels will approach the true 
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LST climatology. Study using microwaves to remove the influence of cloud cover indicated 

that: i) solar radiation during the day in clear-sky situations results in higher LST values (a 

generally positive bias); while ii) during the night it is generally negative because of 

increased radiative cooling (Ermida et al. 2019). The use of in-situ instrumentation can also 

be used in this case to determine the validity of LST measurements. 

 

Despite these limitations, this study provided a greater understanding of the local 

temperature variation within the large cities of Bangladesh and provides further information 

for developing possible mitigation measures.  

 

5. Conclusion 

 

To the best of our knowledge, this is the first study of its kind to characterise SUHII temporal 

trends over large cities in Bangladesh, incorporating 20 years of quality-controlled, day and 

night, MODIS LST data, and a selection of causal factors. A buffering technique was 

employed to generate a rural boundary at a defined distance from the existing urban areas 

and SUHII was determined as the difference between these two areas. The Pearson’s 

correlation was used to isolate those factors affecting day and night SUHII and MK tests 

were used to examine the temporal trends. Analysis indicated that the magnitude of annual 

SUHII was high for Dhaka (2.74 °C) and Chittagong (1.92 °C) during the day, however at night 

Chittagong had the largest magnitude (1.90 °C) followed by Dhaka (1.57 °C). Day and 

nighttime intensities appeared to be increasing, causing a narrowing of diurnal temperature 

range (DTR). Monthly analysis revealed that SUHII was greater (with few exceptions) and 

highly pronounced during the dry months than during wet months. An assessment of causal 
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factors revealed that population (in terms of city size and surface cover), lack of greenness 

and anthropogenic forcing were the main factors affecting the temperature of Bangladesh 

cities. A trend assessment indicated that daytime SUHII over four out of five cities was 

increasing, while at night three cities were experiencing statistically insignificant positive 

trends, and the nighttime trend in Khulna city was decreasing. Monthly trend statistics 

varied significantly depending on the city, though an increasing SUHII trend in daytime was 

more pronounced, highlighting significant thermal variations present in city areas.   

 

The findings of this study are expected to provide important information for further work 

given that global warming is likely to exacerbate urban heat island effects in the near future. 

This study supports progress towards the UN’s sustainable development goals (SDGs) and 

the local climatic information detailed in this study could help in the development of area-

specific mitigation measures. 
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Table 1 Variance inflation factor (VIF) for explanatory variables  

Variable  Variance Inflation Factor (VIF) 

 Dhaka Chittagong Khulna Rajshahi Sylhet 

δAOD 2.177 2.023 1.439 1.321 1.403 

δBCI - - - - 2.464 

δEVI 6.640 5.019 1.790 6.106 3.740 

δPOP 3.570 2.991 1.700 3.432 2.215 

δNTL 2.241 5.541 2.511 6.526 - 

δVCF 1.413 1.204 1.460 1.262 1.349 

δWSA 1.275 2.623 1.743 1.262 3.279 

 

 

Table 2 Pearson’s correlations between annual day and night surface urban heat island 

intensity (SUHII) and factors across cities  

Factors  Dhaka Chittagong Khulna Rajshahi Sylhet 

 Day Night Day Night Day Night Day Night Day Night 
δAOD -0.372 -0.213 -0.325 -0.429 -0.142 0.117 0.322 -0.015 0.089 0.031 

δBCI - - - - - - - - 0.381 0.467** 

δEVI -
0.891* 

-0.491** -0.863* -0.318 -
0.766* 

0.456** -0.371 -0.508** -0.391 -0.567* 

δPOP 0.919* 0.458 0.718* -0.135 0.385 -0.342 0.496** 0.600* 0.370 0.389 

δNTL -0.364 -0.140 0.770* 0.451** 0.603* -0.625* 0.534** 0.407 - - 

δVCF 0.310 -0.070 0.061 0.099 0.066 -0.180 0.226 0.154 0.266 0.243 

δWSA -0.149 -0.286 0.515** 0.154 0.626* -0.795* -0.299 -0.226 -0.115 -0.388 

* Significant at 99%; ** Significant at 95%  

 

Table 3 Annual day and nighttime trend of SUHII in five cities (°C/y) 

Time  Dhaka  Chittagong Khulna Rajshahi  Sylhet 

Daytime  0.062 0.046* 0.032* 0.020** 0.017 
Nighttime  0.012 0.007 -0.021 0.012** 0.015 

* Significant at 99%; ** Significant at 95%  
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Table 4 Monthly day and night trend of SUHII for five cities (°C/y) 

Mon  Dhaka Chittagong Khulna Rajshahi Sylhet 

 Day Night Day Night Day Night Day Night Day Night 
Jan 0.060* 0.023** 0.033* 0.010 0.020 -0.026* 0.048* 0.006 0.013 0.008 

Feb 0.067 0.037* 0.029 0.015 0.026 -0.003 0.014 0.003 0.003 0.011 

Mar 0.063* 0.029 0.042 0.024 0.025 0.002 0.016 0.011 0.050 0.038* 

Apr 0.090* 0.012 0.092* 0.016 0.035 -0.017 0.048** -0.003 0.051** 0.045 

May 0.025 -0.015 0.037 -0.018 0.032 -0.025 0.032 -0.046* 0.082** -0.005 

Jun 0.093 0.032 0.119 0.044 0.056 -0.001 0.081** 0.068** -0.153 0.144** 

Jul -0.022 -0.018 0.099 0.051 -0.098 -0.034 0.001 0.012 0.072 0.000 

Aug 0.006 -0.010 -0.012 -0.091 0.129* 0.024 0.006 0.008 -0.066 0.001 

Sept 0.071** 0.010 0.099* 0.011 0.064* -0.025 0.044 0.016 0.015 0.042** 

Oct 0.059* 0.010 0.069* 0.036** 0.061* -0.008 0.037 0.030** 0.014 0.019 

Nov 0.049* 0.028* 0.061 0.019 0.024 -0.038* -0.014 0.029* 0.016 0.015 

Dec 0.039* 0.010 0.025 0.013 0.024** -0.046 -0.008 0.012* 0.004 0.005 

* Significant at 99%; ** Significant at 95%  

 

 

Table 5 Percentage of pixels (%) remaining after removal of cloud–affected pixels 

Period  Dhaka Chittagong Khulna Rajshahi Sylhet 

 Rural Urban Rural Urban Rural Urban Day Night Day Night 

Annual day 75.9 72.9 73.9 74.8 75.9 73.9 75.6 75.7 73.8 71.6 
Annual night 74.1 73.9 69.6 70.5 75.0 74.8 77.2 77.6 72.1 71.9 
Pre-mon day 91.2 90.5 87.5 89.0 93.0 91.6 94.2 94.8 85.4 84.1 
Pre-mon night 94.4 93.5 95.4 95.3 94.5 94.4 96.7 97.1 85.4 85.7 
Monsoon day 37.4 28.6 34.4 35.7 36.3 30.0 34.8 33.8 34.9 29.1 
Monsoon 
night 

28.9 29.3 15.4 18.1 31.0 30.4 35.4 36.5 28.9 28.0 

Post-mon day 98.2 98.0 96.5 97.4 98.8 99.1 97.8 98.2 98.5 98.5 
Post-mon 
night 

97.1 96.5 95.7 95.6 98.1 97.9 99.0 99.0 98.7 98.6 

Winter day 96.8 97.7 97.8 97.8 96.4 98.0 96.6 97.6 97.6 97.9 
Winter night 98.6 98.7 98.7 98.8 98.7 98.7 98.7 98.7 98.7 98.7 
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